
A Smart Memory Design
Concurrent-Processing Memory (CP memory)

By ChengPu Wang, Independent Researcher, USA

Abstract: A novel memory with
• simple processing power at each memory element;
• internal connectivity between memory elements.
• eliminates most streaming activities for data processing
purpose on the data bus;
• general-purposed;
• easy to use, pin compatible with conventional memory;
• practical for implementation.

Application to Parallel Operations:
• Universal: matching, thresholding, insertion, deletion. ~ 1.
• Local (size M): filtering ~ M, template matching ~ M^2,
modeling ~ single cell exchange count.
• Global (size N): sort, sum. ~ sqrt[N] or Log3[N].

Conventional bus-sharing CPU/Memory Architecture

Advantages of the conventional bus-sharing CPU/Memory Architecture:
• Common and mature.
• Fit our Human logic well.
• Good for serial operations.

Not good for parallel operations, due to bus bottle-neck problems. For
an example, 2D neighborhood averaging:

1. All pixels are streamed into CPU from the memory, multiple times.
2. The neighbors are added inside the CPU serially.
3. The results are streamed back to memory.
• Step 1 and 3 are necessary only due to serial implementation.
• Step 2 may not be the most efficient algorithm.

Desire for parallel operations to be carried out:
• Locally in a smart memory, which is pin-compatible with a conventional

memory.
• Concurrently.

Concurrent Processing Memory

• Rule 1: Each element has one connection with the data bus, and has
a unique address.

• Rule 2: One element can read from or write to the data bus
exclusively.

Conventional Memory:
• No connectivity;
• Only good at memorizing unrelated elements one at a time

register

Data Bus

register

Address Bus

Decoder

s s

• Rule 3: More than one element can be activated concurrently by the
element control unit which is in use.

• Rule 4: Multiple elements can read from the data bus concurrently.

Element Control Unit

• Rule 5: Multiple elements can be required to write their addresses to
the data bus concurrently: Each element asserts the line which
connects it back to an encoder inside the element control unit, which
then writes either the highest or the lowest encoded address exclusively
to the data bus. If there is no line being asserted after such a request,
the element control unit writes a predefined value to the data bus,
indicating null.

• Rule 6: Each element contains a fixed number of registers.

• Rule 7: The neighboring elements are connected so that an element
can read at least one register of each of its neighbors.

• Rule 8: There is an extra external CMD pin to indicate the address
and data bus contains whether an instruction or address and data for
the memory when it is enabled.

Prcss

CMD

Prcss

CP Memory System Architecture

• Element control unit: Encoder/Counter + General Decoder
• Enabled: by assigned high address
• Pin Compatible: LSB or MSB of the address bus as the CMD pin
• Internal cache: kernel (CP memory as co-processor)

CMD Enable

Cache

Kernel

Address Logic in the General Decoder

• Carry-pattern Generator: inputs a carry number, activates
corresponding (incremented) outputs, e.g. carry number is 3.

• Parallel Shifter: shift the carry pattern by an input address, e.g. 4.
• All-line Decoder: all lines below an end address are also activated,

e.g. 16
• The two sets of outputs are AND-combined together to activate the

corresponding elements.
Rule 9: All the outputs of a general decoder are activated if they

correspond to the increment of the carry number starting at the input
address and if they are equal to or less than the end address.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Element Instruction Set

Addressing Registers: 0th (connected), 1st (operational), etc,

Minimal Instruction Set: a MUX and a comparator in each element
• Conditionally execution in respect to the values of its 0th and 1st registers.
• Write address.
• Copy to its 1st register from any one of: its own registers, the data bus, and

its neighbor’s 0th registers.
• Copy its 1st register to any of its own registers, or the data bus.
• Reset its 1st register to 0 or 1.

Enhanced Instruction Set: + an accumulator in each element
• Negate its 1st register.
• Add to or subtract from its 1st register any one of: its own registers, its

neighbor’s 0th registers, and the data bus.
• Perform bit-shift operations to its 1st register using the value of any one of: its

own registers, its neighbor’s 0th registers, and the data bus.

Internal Scaling: only code change is required;
• Combine a number of elements to hold one array item, using carry number;
• Divide one element by a number of array items, to save hardware.
• Interleave one element by a number of arrays, to save hardware.

Use of Minimal Instruction Set

Insertion, Deletion: ~ 1
• Buffer is always dynamic
• CP memory can be always closely packed

Matching:
• to count match: ~1
• to find 1st match: ~1
• to enumerate all matches: ~ match count
• to construct histogram ~M, and to estimate/calculate sum.

Find Limit: two binary searches (for upper limit, and then for the maximum).

Sorting: e.g. into small to large

• direct comparison with neighbors
• to end sorting immediately;

• ~1 to sort all once;
• ~ N for simplest algorithm
• ~ sqrt[N] for an improved algorithm.

5 4 3 2 2 2 6 1

5 4 3 64 2 2 2 1

Use of Enhanced Instruction Set

CPU-bus:
Template matching: size M
• ~M read, to all sections;
• ~M sum of diff, for all sections;
• ~1 shift to new position;
• ~M repeat for all positions.
• 1D ~ M^2, 2D ~ Mx^2 My^2

Filtering: size M ~ M, e.g. Gaussian (1, 2, 4, 2, 1) = original + (1, 1, 1) x 2

Sum:
• parallel sum: ~ M
• serial sum: ~ N / M
• total: ~ sqrt[N]

Line Detection: no floating math
• concurrent neighborhood counting;
• direct counting at 0[deg] and 90[deg];
• atan[My / Mx]: messenger;
• angle resolution → {(Mx, My)} set;
• concurrent messengers;

Connectivity
Use Long range connectivity, to reduce instruction cycle count for global
operations further, e.g. sum:
•Log3[N] connection: ~ log3[N]

Connect M-dimension lattice into (M+1)-dimension lattice, e.g. line
detection:
• Concurrent direct neighborhood counting in each plane, e.g. 0-7 and 0-2;
• SIMD pipeline;

Parallel Counter

Carry-pattern Generator

• D0 = 1
• D1 = !C2 !C1 C0
• D2 = !C2 C1 !C0 + D1 = !C2 (C1 + C0) (!C1 + !C0)
• D3 = !C2 C1 C0 + D1 = !C2 C0
• D4 = C2 !C1 !C0 + D2 + D1 = (C2 + C1 + C0) (!C2 + !C1) (!C1 + !C0) (!C2 + !C0)
• D5 = C2 !C1 C0 + D1 = !C1 C0
• D6 = C2 C1 !C0+ D3 + D2 + D1 = (!C2 + !C0) (C1 + C0)
• D7 = C2 C1 C0 + D1 = (!C2 + C1) (C2 + !C1) C0

Parallel Shifter

All-line Decoder
• F7 = E2 E1 E0 = E2 (E1 E0)
• F6 = F7 + E2 E1 !E0 = E2 E1 = E2 (E1)
• F5 = F6 + E2 !E1 E0 = E2 E1 + E2 E0 = E2 (E1 + E0)
• F4 = F5 + E2 !E1 !E0 = E2 = E2 (1)
• F3 = F4 + !E2 E1 E0 = E2 + E1 E0 = E2 + (E1 E0)
• F2 = F3 + !E2 E1 !E0 = E2 + E1 = E2 + (E1)
• F1 = F2 + !E2 !E1 E0 = E2 + E1 + E0 = E2 + (E1 + E0)
• F0 = F1 + !E2 !E1 !E0 = 1 = E2 + (1)

Discussion:
Other Applications:
• Video driver for animation.
• FFT, Matrix Math.

Instant division:
Using Parallel Counter, All-line Decoder, and Carry-pattern Generator

Acknowledgement:
• Zhen Wang:

• Yingxia Wang:

Contact: cpyx.wang@verizon.net

Summary

• Rule 1. Addressable.
• Rule 2. Exclusively read and write.
• Rule 3. Concurrent activation.
• Rule 4. Concurrent read.
• Rule 5. Concurrent address write.
• Rule 6. Multiple registers.
• Rule 7. Neighboring connectivity.
• Rule 8. Limited processing power: 5 instructions + 3 instructions.
• Rule 9. (input address + n * carry number) < end address.

Improved Sort Algorithm ~ sqrt[N]

1. Determine the best sorting order: the items to be sorted count
should be less than N / 2.

2. Use the 1st algorithm until the items to be sorted is less than M in
~ N / M instruction cycles: (2, 5, 4, 2, 2, 3, 1, 6).

3. Find the 1st position to be sort from left whose left is not larger
than right: (2, 5, 4, 2, 2, 3, 1, 6).

4. Move the item to the correct position: (1, 2, 5, 4, 2, 2, 3, 6)
5. Repeat Step 3 and 4.
6. Find the 1st position to be sort from right whose left is larger than

right: (1, 2, 5, 4, 2, 2, 3, 6).
7. Insert the left item to the correct position: (1, 2, 5, 2, 2, 3, 4, 6).
8. Repeat Step 6 and 7: (1, 2, 2, 2, 3, 4, 5, 6).
Step 2 to 8 takes ~M instruction cycles.
The total instruction cycles count is ~ sqrt[N].

